Trwają zapisy do grupy

Szkolenie: Zastosowania SOTA w przetwarzaniu konkretnych danych

W systemach wykorzystujących szeroko rozumianą sztuczną inteligencję coraz częściej wykorzystujemy dane takie jak teksty, grafy czy chmury punktów 3D. Praktyczne zastosowanie modeli uczenia maszynowego do takich danych wiąże się z wieloma wyzwaniami, takimi jak duży rozmiar modeli (problemy z pamięcią oraz czasem odpowiedzi), brak modeli gotowych do użycia na produkcji czy niewielkie ilości dostępnych danych treningowych. Sieci neuronowe dedykowane do przetwarzania danych 3D muszą być niezmiennicze na obroty i permutacje. Z kolei przetwarzanie danych o strukturze grafowej z wykorzystaniem sieci neuronowych wymaga zastosowania dedykowanych modułów, które potrafią agregować informacje z takich danych. W ramach szkolenia omówiona zostanie tematyka efektywnego wykorzystania najnowszych modeli językowych opartych na architekturze Transformera. Poruszone zostaną kwestie trenowania wyspecjalizowanych modeli oraz problemów z ich rozmiarem i szybkością. Ponadto omówione zostaną architektury dedykowane do przetwarzania chmur punktów i grafów.

  • Trenerzy praktycy
  • Kameralne grupy

Czas trwania szkolenia:2 dni (16h)

Poziom zaawansowania:

Kod kursu:DL/SOTA

neural-networks

Dostępne terminy szkolenia

  • Termin
  • Trener
  • Cena
  • Zapis
  • Lokalizacja

Termin:

27 lutego
Trwają zapisy na szkolenie

Trener:

Trener-Sages

Cena:

2350 PLN netto
Ikona podpowiedziDowiedz się więcej o cenach szkoleń - zapraszamy do kontaktu
+23% VAT

Lokalizacja:

Zdalne
Zdalne
Ikona podpowiedziZapytaj o inne lokalizacje - w tym celu skorzystaj z chatu

Termin:

26 czerwca
Trwają zapisy na szkolenie

Trener:

Trener-Sages

Cena:

2350 PLN netto
Ikona podpowiedziDowiedz się więcej o cenach szkoleń - zapraszamy do kontaktu
+23% VAT

Lokalizacja:

Zdalne
Zdalne
Ikona podpowiedziZapytaj o inne lokalizacje - w tym celu skorzystaj z chatu

Termin:

25 września
Trwają zapisy na szkolenie

Trener:

Trener-Sages

Cena:

2350 PLN netto
Ikona podpowiedziDowiedz się więcej o cenach szkoleń - zapraszamy do kontaktu
+23% VAT

Lokalizacja:

Zdalne
Zdalne
Ikona podpowiedziZapytaj o inne lokalizacje - w tym celu skorzystaj z chatu

Forma szkolenia

Interesuje Cię szkolenie stacjonarne?

Powiadom o kolejnych terminach

Interesuje Cię szkolenie w innym terminie?

Zastosowania SOTA w przetwarzaniu konkretnych danych

Cele szkolenia

  • Poznanie najnowocześniejszych algorytmów przetwarzania języka naturalnego opartych na architekturze transformera

  • Zapoznanie się z metodami przetwarzania danych 3D, w szczególności chmur punktów, z wykorzystaniem metod sztucznej inteligencji

  • Poznanie architektur sieci neuronowych dedykowanych do przetwarzania danych o strukturze grafowej

  • Zdobycie umiejętności praktycznego zastosowania omawianych algorytmów


Dla kogo?

  • Szkolenie adresowane jest do osób zajmujących się na co dzień głębokim uczeniem, które chcą być na bieżąco z najnowszymi trendami

  • W szczególności szkolenie przeznaczone jest dla programistów stosujących sztuczną inteligencję w przetwarzaniu języka naturalnego, przetwarzaniu chmur punktów lub pracy z danymi o strukturze grafowej


Zalety

  • Zajęcia prowadzone przez specjalistów, którzy na co dzień pracują z modelami do przetwarzania języka naturalnego, chmur punktów oraz grafów

  • Możliwość zapoznania się z zagadnieniami związanymi z wdrażaniem najnowocześniejszych modeli głębokiego uczenia w środowiskach produkcyjnych

  • Praktyczne zadania pozwalające dokładnie zrozumieć przekazywaną teorię


Wymagania

  • Od uczestników szkolenia wymagana jest znajomość podstaw działania sieci neuronowych oraz znajomość narzędzi do ich implementacji w języku Python (np. PyTorch)


W cenie otrzymasz:

  • Materiały szkoleniowe

  • Certyfikat ukończenia szkolenia

  • W przypadku szkolenia w trybie stacjonarnym zapewnimy Ci również lunch oraz sprzęt niezbędny do nauki

Program szkolenia

Pobierz program w PDF

Praktyczne aspekty wdrażania najnowocześniejszych modeli głębokiego uczenia

  • Wydajność dużych modeli

  • Dostępność przetrenowanych wag

  • Dostępność danych uczących

SOTA w NLP

  • Architektura Transformer

  • Zastosowania Transformerów

  • Optymalizacja rozmiaru oraz efektywności modeli

  • Wdrażanie Transformerów w praktyce

Przetwarzanie chmur punktów 3D

  • Wymagania związane z przetwarzaniem danych 3D

  • Metody przetwarzania chmur 3D z wykorzystaniem sieci neuronowych

  • NeRF

  • Hiper sieci w przetwarzaniu chmur punktów 3D

Wykorzystanie sieci neuronowych do pracy z danymi o strukturze grafowej

  • Przykłady danych o strukturze grafowej oraz zastosowań sztucznej inteligencji do ich przetwarzania

  • Sieci grafowe

Podobne szkolenia